PDE.h
Go to the documentation of this file.
1 /*************************************************************************
2 > File Name: PDE.h
3 > Project Name: CubbyFlow
4 > Author: Chan-Ho Chris Ohk
5 > Purpose: Partial differential equation functions for CubbyFlow.
6 > Created Time: 2017/08/31
7 > Copyright (c) 2018, Chan-Ho Chris Ohk
8 *************************************************************************/
9 #ifndef CUBBYFLOW_PDE_H
10 #define CUBBYFLOW_PDE_H
11 
12 #include <array>
13 
14 namespace CubbyFlow
15 {
27  template <typename T>
28  std::array<T, 2> Upwind1(T* d0, T dx);
29 
39  template <typename T>
40  T Upwind1(T* d0, T dx, bool isDirectionPositive);
41 
51  template <typename T>
52  T CD2(T* d0, T dx);
53 
65  template <typename T>
66  std::array<T, 2> ENO3(T* d0, T dx);
67 
78  template <typename T>
79  T ENO3(T* d0, T dx, bool isDirectionPositive);
80 
93  template <typename T>
94  std::array<T, 2> WENO5(T* v, T h, T eps = 1.0e-8);
95 
105  template <typename T>
106  T WENO5(T* v, T h, bool is_velocity_positive, T eps = 1.0e-8);
107 }
108 
109 #include <Core/Math/PDE-Impl.h>
110 
111 #endif
std::array< T, 2 > ENO3(T *d0, T dx)
3rd order ENO. d0[3] is the origin.
Definition: PDE-Impl.h:43
std::array< T, 2 > WENO5(T *v, T h, T eps)
5th order WENO. d0[3] is the origin.
Definition: PDE-Impl.h:159
T CD2(T *d0, T dx)
2nd order central differencing. d0[1] is the origin.
Definition: PDE-Impl.h:36
Definition: pybind11Utils.h:24
std::array< T, 2 > Upwind1(T *d0, T dx)
1st order upwind differencing. d0[1] is the origin.
Definition: PDE-Impl.h:17